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Introduction
The impacts of climate and climate change on 
infectious disease dynamics, distribution, and 
spread have been the subject of significant 
discussion (Brisbois and Ali 2010; Chaves 
and Koenraadt 2010; Lafferty 2009; Ostfeld 
2009; Pascual and Bouma 2009; Randolph 
2009) because temperature can have an 
impact on the seasonality and intensity of 
infectious disease transmission (Harvell 
et al. 2002). Dengue fever, caused by a 
virus spread predominantly by Aedes aegypti 
mosquitoes, is emblematic of a disease whose 
rapid expansion may be partly fueled by 
changing climatic conditions. Bhatt et al. 
(2013) estimated that the four dengue sero-
types (DEN-1, 2, 3, 4) cause 390 million 
annual infections, 96 million of which are 
symptomatic, representing a significant global 
disease burden. Therefore, understanding 
links between local and global climate and 
weather patterns and disease outbreaks is an 
important topic of inquiry.

Dengue virus (DENV) transmission 
predominantly occurs in tropical regions. 
However, there has been an increase in the 
outbreak intensity and spatial distribution of 

dengue in the Americas over the past decade 
(Bouri et al. 2012; Brathwaite Dick et al. 
2012). Travel within and across countries, 
the growth of substandard urban conditions, 
and the cessation of public health and vector 
control programs are collectively understood 
as contributing to this increase (Gubler and 
Clark 1995; Wilder-Smith and Gubler 2008). 
The possibility of concurrent circulation of 
up to four DEN serotypes in a given location 
(Halstead 1992) and changing environmental 
conditions further complicates dengue 
ecology. Laboratory and field-based studies 
indicate that climate has an important role in 
mosquito and dengue viral development and 
transmission; however, linking these variables 
to actual outbreaks remains challenging.

Meteorologica l  var iables  such as 
temperature and precipitation affect the 
biophysical functioning of the mosquito 
and the breeding habitat (e.g., Christophers 
1960). Precipitation can increase vector 
density by providing breeding habitat 
(Moore et al. 1978), and temperature affects 
mosquito hatching rate, development time 
(Mohammed and Chadee 2011), and survival 
(Tun-Lin et al. 2000). Temperature further 

influences virus transmission dynamics by 
shortening the extrinsic incubation period 
(EIP). Watts et al. (1987) reported that the 
EIP for the DEN-2 serotype declines from 
12 days at temperatures ≤ 30°C to 7 days 
at 32–35°C. Similarly, Rohani et al. (2009) 
noted that mosquitoes became infectious 
with DEN-2 and DEN-4 at day 5 at 30°C, 
4 days sooner than mosquitoes held at 26°C 
and 28°C. A shorter EIP heightens the 
transmission potential to humans and the 
outbreak intensity (Jetten and Focks 1997; 
Patz et al. 1998). These biophysical processes 
underpin the links between climate vari-
ability and observed dengue fever cases across 
multiple spatiotemporal scales (Cazelles et al. 
2005; Gagnon et al. 2001; Hopp and Foley 
2003; Johansson et al. 2009) and have led 
to concerns that virus transmission may 
increase in regions where it has until now 
been uncommon (Patz et al. 1998). Recent 
empirical work in Mexico found a decreasing 
number of Ae. aegypti with increased eleva-
tion along an altitudinal transect (Lozano-
Fuentes et al. 2012). That study also found 
populations of Ae. aegypti at higher elevations 
in Mexico than previously recorded within 
the country. Collectively, the results suggest 
the possibility of future temperature-induced 
Ae. aegypti expansion into areas beyond 
current geographical boundaries.
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Background: Dengue fever, caused by a mosquito-transmitted virus, is an increasing health 
concern in the Americas. Meteorological variables such as temperature and precipitation can affect 
disease distribution and abundance through biophysical impacts on the vector and on the virus. 
Such tightly coupled links may facilitate further spread of dengue fever under a changing climate. 
In the southeastern United States, the dengue vector is widely established and exists on the current 
fringe of dengue transmission.

oBjectives: We assessed projected climate change–driven shifts in dengue transmission risk in 
this region.

Methods: We used a dynamic mosquito population and virus transmission model driven by 
meteorological data to simulate Aedes aegypti populations and dengue cases in 23 locations in the 
southeastern United States under current climate conditions and future climate projections. We 
compared estimates for each location with simulations based on observed data from San Juan, 
Puerto Rico, where dengue is endemic.

results: Our simulations based on current climate data suggest that dengue transmission at levels 
similar to those in San Juan is possible at several U.S. locations during the summer months, particu-
larly in southern Florida and Texas. Simulations that include climate change projections suggest 
that conditions may become suitable for virus transmission in a larger number of locations and for 
a longer period of time during each year. However, in contrast with San Juan, U.S. locations would 
not sustain year-round dengue transmission according to our model.

conclusions: Our findings suggest that Dengue virus (DENV) transmission is limited by low 
winter temperatures in the mainland United States, which are likely to prevent its permanent 
establishment. Although future climate conditions may increase the length of the mosquito 
season in many locations, projected increases in dengue transmission are limited to the 
southernmost locations.
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Several model-based studies have focused 
on relationships between climate and dengue, 
highlighting the utility of these approaches 
(Bannister-Tyrrell et al. 2013; Focks et al. 
1993; Hales et al. 2002; Hopp and Foley 2001; 
Martens et al. 1997; Patz et al. 1998). Such 
models are useful tools given the lack of long-
term mosquito population records (Morin and 
Comrie 2010). Dynamic models, in particular, 
can address data constraints by simulating 
mosquito populations based on local climate 
and environmental inputs (Focks et al. 1993; 
Morin and Comrie 2010). This is an important 
advance in understanding the links between 
climate change and disease because current and 
future climate scenarios can be used to simulate 
local mosquito populations for comparison. At 
the same time, the complexity of mosquito-
borne disease ecology means that not all loca-
tions will see an increase in disease, and some 
may actually experience a decrease under future 
climate conditions (Lafferty 2009).

Understanding how the geography of 
dengue outbreaks may change under future 
climate conditions is a particular concern in the 
southern United States because it exists along 
the periphery of transmission in the Americas. 
Dengue is epidemic and endemic through parts 
of Central and South America. Although the 
United States has a history of dengue epidemics 
through the 1940s, decreased transmission is 
often attributed to changes in social and built 
environments (Reiter 2001). However, it 
remains possible that a more favorable climate 
may render current strategies less useful. For 
example, recent dengue outbreaks in Florida, 
Texas, and Hawaii (Bouri et al. 2012) could 
be indicative of how a changing climate may 
enhance transmission risk.

This study addressed these concerns by 
using downscaled projected climate conditions 
from global climate model (GCM) ensembles 
to drive a Dynamic Mosquito Simulation 
Model (DyMSiM) coupled with a virus trans-
mission component. Model parameter values 
were derived from successful simulations in 
San Juan, Puerto Rico (Morin et al. 2015), a 
nearby location with significant dengue burden 
and the requisite data necessary for model 
validation. Present and future meteorological 
data were produced by a statistical weather 
generator and were used to drive DyMSiM 
and to simulate total mosquito populations 
and human dengue cases for 23 sites in the 
southeastern United States. These sites were 
selected because a) they are population centers, 
b) they possess relatively complete climatic 
data sets (> 98%), and c) they are regionally 
at greater risk of tropical disease emergence 
(Gubler and Clark 1995; Hotez et al. 2014). 
To isolate the climatic component, the present 
and future meteorological inputs were the 
only variables changed among the sites. We 
simulated mosquito populations and dengue 

transmission under current and future climate 
change projections in the southeastern United 
States to address two primary study questions.
1. What sites in the southeastern United 

States can currently support dengue fever 
transmission, and how might this change 
under future climate projections?

2. What impact does climate have on the 
seasonality of the mosquito vector and on 
the potential transmission of DENV in the 
southeastern United States?

Methods

Collection and Generation of 
Climate Data and GCM scenarios
We downloaded 20 years (1981–2000) of 
observed daily weather station measure-
ments (temperature and precipitation data) 
from the Global Historical Climatology 
Network Database (Menne et al. 2012a, 
2012b; National Centers for Environmental 
Information; https://www.ncdc.noaa.gov/oa/
climate/ghcn-daily/) for each of the 23 sites. 
Future climate change data were accessed from 
GCM data housed in the statistical weather 
generator LARS-WG5 (LARS) (Rothamsted 
Research 2016). Daily-level data from GCMs 
are not directly comparable to observed daily 
data; therefore, we used LARS to produce a 
comparable series. LARS uses historical data 
to create a new synthetic time series that is 
statistically similar to the observed data at each 
site, enabling translation between monthly and 
daily time scales. We evaluated the observed 
and synthetic time series to assess the software’s 
ability to reproduce realistic daily data. The 
daily probability distributions (Kolmogorov–
Smirnov test) and monthly means (Student’s 
t-test) for precipitation, minimum, and 
maximum temperatures for each site showed 
only one statistically significant value (p < 0.01; 

Jackson, MS, September minimum tempera-
ture). The minimal significance differences 
between the observed and synthetic data sets 
for these values suggests that the synthetic time 
series reasonably capture the overall patterns of 
the observed data sets.

We produced t ime ser ies  for the 
future climate scenario by calculating 
GCM ensemble–projected average monthly 
changes in temperature (absolute) and 
precipitation (proportion) between the 
GCM-simulated baseline (1961–1990) and 
future (2045–2065) periods. We used the 
closest location for which the GCMs (1.3–3.9° 
resolution) were run to apply the changes 
in LARS for each site to the synthetic time 
series in order to create 21 years of down-
scaled, daily time series of site-specific future 
midcentury climate conditions (2046–2056). 
We applied the same procedure to generate 
comparable baseline data to use in place of 
the observed data. We used an ensemble of 
15 GCMs (Table 1) to account for models 
that over- or under-predicted specific variables. 
The projections used the Intergovernmental 
Panel on Climate Change (IPCC) SRA1B 
Special Report on Emissions scenario, which 
assumes “[a] future world of very rapid 
economic growth, global population that peaks 
in mid-century and declines thereafter, and 
rapid introduction of new and more efficient 
technologies, with the development balanced 
across energy sources” (IPCC 2007a). This 
scenario was selected because it was available 
for all models and is a midrange emissions and 
warming scenario (IPCC 2007b).

Dynamic Mosquito Simulation 
Process
DyMSiM is a meteorologically driven, process-
based model containing entomological and 
epidemiological components. The model 

Table 1. The 15 global climate models used to create a single ensemble scenario for each site, obtained 
through the LARS-WG5 interface (Rothamsted Research 2016). 

GCM name Description
BCM2 Bergen Climate Model (BCM) Version 2
CGMR Canadian Centre for Climate Modeling and Analysis, CGCM22.1(T47)
CNCM3 Centre National de Recherches Meteorologiques
CSMK3 CSIRO Mark 3.0
FGOALS LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
GFCM21 Geophysical Fluid Dynamics Lab, NOAA
GIAOM NASA Goddard Institute AOM
HADCM3 Hadley Centre for Climate Prediction and Research
HADGEM Hadley Centre Global Environmental Model
INCM3 Institute of Numerical Mathematics (Russian Academy of Science)
IPCM4 Institut Pierre Simon Laplace (ISPL)
MIHR National Institute for Environmental Studies, Japan, MRI-CGCM2.3.2
MPEH5 Max-Planck Institute
NCCCSM NCAR Community Climate System Model
NCPCM NCAR/NSF/DOE/NASA/NOAA Parallel Climate Model
Notes: AOM, Atmospheric Ocean Model; CSIRO, Commonwealth Scientific and Industrial Research Organisation; DOE, 
U.S. Department of Energy; GCM, global climate model; LASG, National Key Laboratory of Numerical Modeling for 
Atmospheric Sciences and Geophysical Fluid Dynamics; NASA, National Aeronautics and Space Administration; NCAR, 
National Center for Atmospheric Research; NOAA, National Oceanic and Atmospheric Administration; NSF, National 
Science Foundation.
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was first parameterized to simulate Culex 
quinquefasciatus populations (Morin and 
Comrie 2010) and has now been adjusted to 
simulate Ae. aegypti and DENV development. 
Using daily temperature and precipitation 
data, mosquito populations are simulated by 
calculating daily rates of development and 
mortality for mosquito cohorts as they proceed 
through their life cycle (egg, larva, pupa, and 
adult). Development rates are calculated 
using temperature, and mortality rates are 
dependent on temperature and, in the case 
of larvae and pupae, water availability. Water 
habitat is calculated for rain-filled containers 
(precipitation minus evaporation and spilling) 
and permanent water sources (levels remain 
constant). During the adult stage, cohorts of 
mosquitoes proceed through their gonotro-
phic cycle, including blood meal questing, 
ovarian development, and egg laying. Rates 
of feeding and ovarian development are 
temperature dependent. Once ovarian develop-
ment is complete and water is available, the 
eggs are deposited. During feeding, mosqui-
toes can become infected with DENV at a 
probability based on human infection rates 
(see below) and will then proceed through a 
temperature-regulated EIP. We input new 
cohorts of eggs into the model if the mosquito 
population drops to zero to prevent extinc-
tion of the mosquito within the model during 
 inhospitable climate conditions.

The human population is simulated 
using a compartmental susceptible–exposed– 
infectious–recovered model. Susceptible 
humans move to the exposed stage based 
on the number of infected mosquitoes that 
have completed the EIP. Exposed individuals 
remain in the exposed and infectious stages 
for a period of 5–7 days before recovering 
from the infection. Mosquito infection rates 
are calculated using the number of humans in 
the infectious stage. To prevent extinction of 
the virus, a minimum human infection rate 
is used when there are few or no infections in 
the human population. The governing equa-
tions for each stage (mosquito and human) as 
well as the parameters and their equations can 
be found in Morin et al. (2015).

San Juan was used for model evalua-
tion because of the availability of multiyear 
dengue case records, which are unavailable 
in the mainland United States owing to a 
lack of long-term transmission. The climate 
of San Juan is an important driver of local 
transmission, and DyMSiM can effectively 
capture inter- and intra-annual variability 
(Morin et al. 2015). We used the same predic-
tors (7 variables, 96 total parameter values, 
Table 2) that had been applied in the previous 
analysis of transmission in San Juan for the 
present analysis, and although we acknowl-
edge the potential for variation among indi-
vidual locations, it was not possible to validate 

these parameters for each location in the 
present analysis. In addition, standardizing 
model outputs for each U.S. site against San 
Juan data while holding all model param-
eters other than climate constant allowed us 
to estimate the specific effects of climate and 
climate change on dengue transmission.

The daily meteorological data sets gener-
ated by LARS, described above, were used 
to drive DyMSiM to simulate current and 
projected future mosquito populations and 
human dengue cases. DyMSiM also requires 
the parameterization of additional envi-
ronmental variables and the site latitude to 
determine the duration of sunlight hours 
(which influences the evaporation of standing 
water). To account for spatiotemporal vari-
ability in parameter values and climate condi-
tions, 96 simulations were performed at each 
site using different combinations of model 
parameter values. The parameter values were 
selected to represent ranges of values reported 
in the literature (Morin et al. 2015). Six of 
the seven parameters included in our suite 
of simulations were represented by only 2 
or 3 possible values because their values are 
well established (Table 2). In contrast, we 
included 12 possible values for habitat area 
(determined by the number and surface area 
of containers available for egg laying) because 
of greater uncertainty and potential for varia-
tion in this parameter (Morin et al. 2013, 
2015). Parameter values for the simulation 
were chosen from the best-fit 1% of simula-
tions for San Juan, Puerto Rico for the period 
2010–2013 because of their superior ability 
to replicate patterns of dengue (Morin et al. 
2015) (Table 2). We simulated a total of 
21 years of daily total mosquito populations 
and dengue case data for each site driven by 
baseline climate, and we repeated this process 
with the future climate scenarios. After 
discarding the first year of DyMSiM results 
to allow for model spin-up time, each of the 
23 mainland U.S. sites had four associated 
20-year daily time series: a) total mosquitoes, 
present climate; b) total dengue cases, present 

climate; c) total mosquitoes, future climate; 
and d) total dengue cases, future climate.

Analysis and Map Visualization 
Process
We compared the outputs of the model runs 
with output from San Juan for each site. The 
analysis results are indicative of one of two 
possibilities for each location: a) transmis-
sion in the mainland U.S. site occurs at the 
same level as that in San Juan, indicating 
that the climate is suitable for transmission, 
but socioeconomic factors, lack of importa-
tion, or other unaccounted-for factors are 
limiting transmission; or b) dengue transmis-
sion in the mainland U.S. site is significantly 
reduced or absent compared with that in San 
Juan, suggesting that the site climate is not 
suitable for epidemic dengue. By repeating 
these steps for the future climate scenarios, we 
also assessed future transmission potential for 
each location.

Maps were created from the model output 
to visualize spatio-temporal variance. For visu-
alization purposes, the daily model outputs 
(mosquito population and dengue cases) were 
aggregated to seasonal values by dividing the 
year into four 13-week periods (approximately 
January–March, April–June, July–September, 
and October–December). For each mainland 
U.S. location and parameterization, data values 
were averaged across the 20-year runs and were 
then compared with the corresponding data 
for San Juan, Puerto Rico. The comparison 
metric (percent of value in San Juan) was then 
averaged across the parameterizations and 
mapped (Figures 1 and 2).

In addition to estimating mosquito 
populations and dengue cases during each 
season for the 23 locations, we conducted a 
separate analysis to estimate weekly variation 
in dengue cases for the Key West, Florida 
and Brownsville, Texas sites. Specifically, we 
averaged estimated numbers of weekly dengue 
cases across the 20-year period to create a 
single annual time series (at weekly resolu-
tion) for each simulation and location. The 

Table 2. Parameter names, values, and total number of values used to create the 96 different model 
parameterizations (Morin et al. 2015).

Parameter name (units) Values
No. of 
values

Habitat area (cm2)a 1.0 × 107, 1.4 × 107, 1.8 × 107, 2 × 107, 
2.4 × 107, 2.6 × 107, 2.8 × 107, 5.0 × 107, 
6.0 × 107, 7.0 × 107, 9.0 × 107, 1.0 × 108

12

Container height (cm)b 8, 12 2
Minimum human infection rate (fraction of infectious 

humans in the population)
4 × 10–5, 6 × 10–5, 8 × 10–5 3

Maximum larval density (per cm3) 0.5, 1 2
Adult survival rate (fraction of mosquitoes surviving per day) 0.86, 0.88 2
Length of human infectious period (days) 5, 7 2
Maximum mammal transmission probabilityc 0.5, 1 2
aHabitat area refers to the surface area of water containers (filled either manually or by precipitation). 
bContainer height refers to the maximum height of water in a container before additional precipitation will cause spillover. 
cMaximum mammal transmission probability refers to the highest probability of transmission of the virus from mosquito 
to human during a blood meal dependent on temperature.
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time series were then standardized against 
the cumulative annual San Juan dengue cases 
using the following equation:

StDen MDen SMDen1
52

ijx ijx iji=
=

|

StDen = s tandardized dengue cases , 
MDen = modeled dengue averaged over the 
20 years, SMDen = modeled dengue in San 
Juan averaged over the 20 years, i = epide-
miological week, j = simulation number, 
x = site. An epidemiological week (epi week) 
is a standardized way of defining the aggre-
gation of days into weeks so that data are 
comparable across years. We then averaged 
across all the simulations to create one annual 
time series each for Key West and Brownsville 
under the base and future climate scenarios. 
This method is similar to the method used 
to estimate seasonal averages for all 23 loca-
tions. Here, however, the standardization 
process only serves to highlight the seasonality 
of transmission (i.e., the percent of the total 
annual dengue cases that occurred each week).

Results
Our estimates suggest that under baseline 
climate conditions, dengue transmission may 
be possible in several sites in the southeast 
United States (Figure 1). The estimated trans-
mission potential was highest during summer 
(July–September), although some locations 
in Florida and Texas may have transmission 
during the spring and fall as well. In addition, 
our estimates suggest that southern Florida 
is as climatically capable of supporting 
dengue transmission as Puerto Rico during 
the summer months, denoted by estimated 
values that are 100% of values estimated for 
San Juan. Absent caseloads during the winter 
at all 23 sites suggest that for all locations, 
the current winter temperatures are too low 
to allow virus transmission. However, our 
estimates suggest that mosquito populations 
during the winter in southern Florida may be 
only slightly lower than mosquito populations 
in San Juan (Figure 2). Although our model 
estimates suggest that Ae. aegypti populations 
may be present at the northernmost sites 
during the summer and the fall, there is little 
likelihood of local transmission (dengue cases) 
during any season in these locations.

Our simulations suggest similar seasonal 
and regional patterns under projected future 
scenarios. Estimated numbers of cases (trans-
mission potential) are highest during the 
summer, and a larger number of northern 
sites show some potential for transmis-
sion during the summer (Figure 1). In the 
far South, the numbers of estimated cases 
are similar to those in San Juan during 
the summer, and some transmission could 
continue in the fall and the spring. Model 

projections also indicate an increase in 
the length of the adult mosquito season, 
but with less of an increase in the number 
of sites affected compared with the esti-
mated  expansion of transmission potential 
(Figure 2).

Site-Specific Results: Key West, 
Florida, and Brownsville, Texas
We conducted additional analysis on Key 
West, Florida, and Brownsville, Texas, 
because both have had recent dengue cases 
(see Bouri et al. 2012) but have contrasting 
climate characteristics. Figure 3 shows dengue 
cases at these sites as a percentage of total cases 
in Puerto Rico, along with plotted climate 
data. Presently, Key West climate condi-
tions are more favorable for transmission 
than those in San Juan during the summer 
(weeks 30–44), with the window widening 
to weeks 27–51 under the future scenario. 
Our modeled output data showed, on average, 
low but continual transmission throughout 
the winter in San Juan. However, this year-
round transmission is not maintained in Key 
West or Brownsville (Figure 1). The climate 
data in Figure 3 show that San Juan has a 

smaller annual temperature range than these 
two sites, with warmer winter temperatures 
capable of supporting year-round transmis-
sion. Conversely, cooler winter conditions 
are likely to prevent or limit transmission in 
Key West, even under future climate condi-
tions. Estimates show a similar pattern for 
Brownsville, but with a shorter time window 
for transmission that does not currently 
exceed that of San Juan. However, transmis-
sion is projected to increase in future climate 
scenarios, exceeding current case numbers in 
San Juan during the summer (weeks 27–35). 
Nevertheless, temperatures remain substan-
tially cooler than in San Juan during fall 
and winter, thus limiting the potential 
for year-round transmission.

Discussion
Our results suggest that the current climate 
is capable of supporting dengue transmission 
throughout much of the southeastern United 
States during limited periods of the summer 
months. Evidence of climatic suitability 
for dengue is not surprising given historic 
epidemics in this region. According to our 
model, southern Florida has the highest 

Figure 1. Baseline and future dengue cases by season (Winter: January–March; Spring: April–June; 
Summer: July–September; Fall: October–December). The larger circles denote present dengue, and the 
inner circles denote projected future dengue. The scale bar refers to percent of dengue cases compared 
with San Juan, Puerto Rico model output for the same period. The sites are Atlanta, Georgia; Birmingham, 
Alabama; Brownsville, Texas; Charleston, South Carolina; Charlotte, North Carolina; Dallas, Texas; 
Jackson, Mississippi; Jacksonville, Florida; Key West, Florida; Little Rock, Arkansas; Louisville, Kentucky; 
Miami, Florida; Nashville, Tennessee; New Orleans, Louisiana; Oklahoma City, Oklahoma; Orlando, Florida; 
Port Arthur, Texas; Raleigh, North Carolina; Richmond, Virginia; San Antonio, Texas; St. Louis, Missouri; 
Tallahassee, Florida; and Tampa, Florida.
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likelihood of transmission, consistent with 
the fact that Florida has reported locally-
acquired cases every year since 2009 [Khan 
2016; U.S. Geological Survey (USGS) 2016]. 
Our estimates for Brownsville under baseline 
climate conditions also indicate a relatively 
long infectious mosquito season, consistent 
with current data for dengue transmission in 
this location (Bouri et al. 2012).

Although our baseline climate projections 
suggest that the potential for dengue transmis-
sion in southern Florida during the summer 
is similar to that in San Juan, outbreaks are 
much less common in southern Florida than 
in San Juan. This difference is likely due in part 
to differences in social factors that influence 
transmission, such as housing infrastructure 
and public health services, which may also 
mitigate future risk. However, our estimates 
suggest that environmental factors may also 
play a role: specifically, the climate in south 
Florida appears to be too cold to maintain 
regular dengue transmission throughout 
the winter months, whereas transmission is 
sustained year-round in Puerto Rico, albeit at 
lower levels during the winter.

Our model projections for future climate 
scenarios suggest that the potential for dengue 
transmission will continue to be seasonal 
throughout the southeastern United States, 
without becoming a year-round phenomenon 
except perhaps in southern Florida, which 
may have some winter dengue activity. This 
scenario could increase the possibility of 
virus maintenance throughout the winter, at 
least during warmer-than-average years. Our 
estimates also suggest that the length of the 
potential transmission season will increase for 
most sites. Although our projections suggest a 
small possibility of summer dengue transmis-
sion at northern sites that currently do not 
support it (e.g., Virginia, North Carolina, 
Tennessee, Kentucky, and Missouri), time 
windows for transmission would be short, 
and at most, only a few localized cases would 
be expected to occur.

In all locations considered, and for both 
current and future scenarios, the projected 
time window for dengue transmission is 
shorter than the seasonal time window for 
Ae. aegypti populations. Studies show that 
the EIP shortens as temperatures rise > 26°C 
(Watts et al. 1987; Rohani et al. 2009). 
The ideal temperature range for Ae. aegypti 
is as low as 20°C (Tun-Lin et al. 2000), 
but the mosquito can remain active until 
temperatures drop to between 10°C–15°C 
(Christophers 1960). Our results suggest 
that conditions favorable to the virus 
(when simulated dengue cases occur) only 
arise during the warmest times of the year, 
likely because of the lengthening of the EIP 
at lower temperatures. Furthermore, our 
model suggests that even in locations where 

Figure 2. Baseline and future mosquito populations by season (Winter: January–March; Spring: 
April–June; Summer: July–September; Fall: October–December). The larger circle denotes present 
mosquito populations, and the inner circle denotes projected future mosquito populations. The scale 
bar refers to percent of mosquitoes compared with San Juan, Puerto Rico model output for the 
same period.

Figure 3. The top panel shows the weekly (averaged across simulations and years) dengue cases (percent 
of Puerto Rico annual total dengue) for San Juan, Puerto Rico and the baseline and future scenarios for 
Key West, Florida and Brownsville, Texas. The bottom panel shows the corresponding temperature and 
precipitation values. Epi week, epidemiological week.
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mosquitos may survive year-round, such as 
southern Florida, temperatures are too low 
to permit dengue transmission during an 
infected mosquito’s lifespan during much 
of the year. Therefore, outbreaks occur only 
when dengue is reintroduced during favorable 
conditions, that is to say, when the length 
of the EIP is shorter than the lifespan of the 
mosquito. In most U.S. locations, dengue 
outbreaks are rare because this potential time 
window is very short, whereas cases are more 
common in southern Texas and Florida, 
where the time window for conditions that 
favor transmission is longer.

Although our findings suggest that current 
climate conditions during the summer in 
southern Florida are capable of supporting 
dengue transmission at levels similar to those 
in San Juan, dengue outbreaks are much less 
common in southern Florida. Furthermore, 
although our model projections suggest that 
lower winter temperatures and a lack of 
year-round transmission contribute to this 
difference, social factors, public health infra-
structure, and other influences may also play 
a role and have been proposed to explain the 
decline in dengue fever transmission in the 
southern United States over time. Nonetheless, 
the likely influence of these factors on the risk 
of dengue does not negate the potential for 
an increase in transmission under more favor-
able climate conditions in the future, and our 
findings suggest that public health departments 
should be prepared to adapt to new levels of 
risk that may result from longer mosquito 
seasons with wider transmission windows.

Geographic proximity also plays a role 
in disease transmission and spread. Places 
with significant tourism, such as southern 
Florida, or places with increased migration 
between endemic and nonendemic loca-
tions, such as the U.S.-Mexico border region, 
have recently experienced localized dengue 
outbreaks (Adalja et al. 2012). Therefore, if 
dengue were to become endemic in Florida, 
or if it were to at least overwinter during some 
years, the risks to neighboring states could 
increase considerably.

Limitations and Future Work
A number of important factors known to affect 
dengue, such as humidity, herd immunity, 
vector competition, insect resistance, viral 
mutation, and socioeconomic factors, are not 
included in the model. Nor do we account 
for land cover variation, geographic relation-
ships to endemic areas, or potential human 
adaption strategies. Dengue disease dynamics 
are complex, and future research should aim to 
develop more comprehensive models that can 
better assess the roles of such variables.

In light of the abovementioned factors, 
our results should be interpreted as climate-
based projections of relative differences in 

estimated risks, not as concrete predictions 
of future climate change impacts on dengue 
fever. The generated climate data provide 
only possible values for daily temperature and 
precipitation. Synthetic baseline and GCM 
data sets are inherently subject to inaccura-
cies; for example, some standard deviation 
metrics between the observed and synthetic 
data sets did not perform as well as the evalu-
ation metrics described in “Methods.” We 
attempted to partially address this concern by 
using the synthetic baseline data in place of the 
observed data to standardize such inaccuracies 
across the baseline and future time series for 
comparative purposes. The use of larger data 
sets and improved downscaling techniques 
may improve the accuracy of future studies.

Case studies have shown that the spatial 
distribution of Ae. aegypti is heterogeneous 
within cities and regions (Hayden et al. 2010; 
Murray et al. 2013). We have attempted 
to account for this heterogeneity by using 
the average from 96 different parameteriza-
tions that were selected to optimize model 
performance based on an analysis of data 
from Puerto Rico. Nevertheless, it remains 
possible that some locations in our study may 
have different spatial patterns of breeding sites 
than those captured in the San Juan valida-
tion, and readers should keep in mind that 
these results were modeled using San Juan 
parameters. Further field studies are needed to 
quantify the distribution of Ae. aegypti across 
U.S. urban landscapes.

Although it would be ideal to have 
accurate mosquito population and breeding 
site data for each location, the paucity and 
accuracy of such records and the length of 
time needed to generate methodologically 
sound data sets is an ongoing problem in 
climate and health research. DyMSiM seeks 
to fill such a void by generating environ-
mentally driven mosquito populations in 
the absence of mosquito data. Future work 
should be focused on evaluating model 
performance in multiple locations and on 
obtaining better location-specific information 
for model parameterization; the model should 
be periodically re-validated as larger dengue 
data sets become available.

Finally, more detailed risk assessments 
are needed to better understand site-specific 
vulnerabilities. This may include parameter-
izing the model against local mosquito data, 
if available, or running the model at finer 
spatial scales within a city. Given that micro-
climatic variations within a community can 
affect mosquito abundance (Hayden et al. 
2010), this additional detail may be useful 
for determining local risk. Inter- and intra-
annual future climate variations may also 
affect the seasonality of dengue transmission 
in ways that current GCMs cannot account 
for when downscaled to the local level. As 

GCM capabilities improve, along with our 
understanding of shifting weather patterns, 
additional analysis may be useful for under-
standing dengue transmission potential.

These l imitations are inherent in 
modeling approaches. Nevertheless, this tech-
nique is useful for demonstrating the contrib-
uting role of climate in shaping dengue fever 
transmission risk within the southeastern 
United States. The impact of climate on 
Ae. aegypti abundance patterns is also impor-
tant for the Chikungunya virus and the Zika 
virus. The current DyMSiM model does not 
incorporate specific characteristics of these 
viruses, but the potential for an increase in 
Ae. aegypti seasonality may have implications 
for the transmission of these viruses as well. 
Future studies incorporating specific tempera-
ture thresholds for the Zika virus and the 
Chikunguyna virus would be helpful.

Conclusion
Hosking and Campbell-Lendrum (2012) 
noted a lack of studies quantifying the links 
between climate and human health; this is 
particularly true for analyses of future dengue 
fever in the southeastern United States. 
We used a dynamic modeling approach to 
estimate future impacts of climate change on 
Ae. aegypti and dengue cases in the United 
States. Our results highlight the potential 
influence of climate on both the vector and 
the virus. Some locations may see an increase 
in both disease risk and vector abundance, 
whereas others may see an increase in 
Ae. aegypti populations but remain on the 
fringe of dengue transmission. Our estimates 
suggest that the dengue transmission window 
is narrower than the Ae. aegypti season length 
at all of the locations evaluated, consistent 
with stringent climatic limitations on the 
virus. Although social and public health infra-
structure play an important role in preventing 
transmission, this research shows that current 
climatic conditions may also be limiting the 
virus. Our findings indicate that it is too cold 
during the winter months for viral transmis-
sion to be sustained under present mainland 
U.S. climate conditions. If so, virus rein-
troduction is required for dengue outbreaks 
to occur. However, future climate changes 
may expand the transmission potential in the 
southeastern United States, making dengue a 
public health challenge in the future.
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